Erosion Test of Continuous Water Flow
Measurement of pressure in viewable hole erosion test
Publication: Canadian Geotechnical Journal
18 January 2018
Abstract
The hole erosion test (HET) is commonly used to study the occurrence of internal soil erosion when water concentrated leaks occur. This erosion is known as "piping" in soil mechanics. Piping erosion is invisible and occurs randomly within the soil body. Therefore, to gain a better understanding of how piping erosion develops, it would be helpful to utilize a viewable HET design in which the dynamics of the piping hole can be observed directly. In this note, a new HET apparatus is presented that can be used to observe the development of piping erosion and to monitor the dynamic pressure condition during the hole erosion process. A preliminary model test was carried out based on the new viewable HET apparatus and "pressure heads" monitoring technique. The results successfully verified the performance of the proposed apparatus and experimental methods during the process of hole erosion, indicating that the hole shape changes during continuous erosion and is not fully symmetrical because of the initial profile of the hole. The internal hole becomes increasingly curved when subjected to continuous piping flow. Test results agree with the numerical simulation reported in 2015 by Riha and Jandora, who considered the effect of the hole entrance shape.
Résumé
L'essai d'érosion de trou (« HET ») est couramment utilisé pour étudier l'apparition de l'érosion interne lorsque des fuites d'eau concentrée se produisent. Cette érosion est connue comme « phénomène de renard » en mécanique des sols. La formation de renard est invisible et se produit au hasard dans le corps du sol. Par conséquent, afin de mieux comprendre comment un renard se développe, il serait efficace d'utiliser une conception HET visible dans laquelle la dynamique du trou peut être observée directement. Dans cette note, un nouvel appareil HET est présenté afin d'observer le développement de l'érosion par le phénomène de renard et de surveiller l'état de la pression dynamique au cours de l'ensemble du processus d'érosion. Un essai modèle préliminaire a été réalisé en fonction de la technique de surveillance du nouvel appareil HET et des « hauteurs piézométriques ». Les résultats ont vérifié avec succès le rendement de l'appareil proposé et les méthodes expérimentales au cours du processus de l'érosion du trou, indiquant que la forme change au cours de l'érosion continue et n'est pas entièrement symétrique en raison du profil initial du trou. Le trou interne devient de plus en plus courbé lorsqu'il est soumis à l'écoulement renard continu. Les résultats de l'essai sont en accord avec la simulation numérique de 2015 par Riha et Jandora qui ont examiné l'effet de la forme de l'orifice du trou. [Traduit par la Rédaction]
Get full access to this article
View all available purchase options and get full access to this article.
References
Adams B.T., Xiao M., and Wright A. 2013. Erosion mechanisms of organic soil and bioabatement of piping erosion of sand. Journal of Geotechnical and Geoenvironmental Engineering, 139(8):1360–1368.
Benahmed N. and Bonelli S. 2012. Investigating concentrated leak erosion behaviour of cohesive soils by performing hole erosion tests. European Journal of Environmental and Civil Engineering, 16(1): 43–58.
Benaissa K., Larbi B., and Angel P.V.M. 2011. Modeling approach of the water/soil interface in the hole erosion test (het). Australian Journal of Basic and Applied Sciences, 5(7): 1213–1220.
Bendahmane F., Marot D., and Alexis A. 2008. Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(1): 57–67.
Boor, B., Kunstatsky, J., and Patocka, C. 1968. Hydraulics of water structures. SNTL Prague.
Cartwright N., Li L., and Nielsen P. 2004. Response of the salt–freshwater interface in a coastal aquifer to a wave-induced groundwater pulse: field observations and modelling. Advances in Water Resources, 27(3): 297–303.
Chaplot V.A.M. and Bissonnais Y.L. 2003. Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope. Soil Science Society of America Journal, 67(3): 844–851.
Cividini A. and Gioda G. 2004. Finite-element approach to the erosion and transport of fine particles in granular soils. International Journal of Geomechanics, 4(3): 201–202.
Fay, J.A. 1994. Introduction to fluid mechanics. MIT Press.
Fell, R., and Fry, J.J. 2005. Internal erosion of dams and their foundations. In Proceedings of the Workshop on Internal Erosion and Piping of Dams and Their Foundations, Aussois, France.
Foster, M.A., Fell, R., and Spannagle, M. 1998. Analysis of embankment dam incidents. UNICIF Report No. R-374. University of New South Wales, Australia.
Haghighi I., Chevalier C., Duc M., Guedon S., and Reiffsteck P. 2013. Improvement of hole erosion test and results on reference soils. Journal of Geotechnical and Geoenvironmental Engineering, 139(2): 330–339.
Luo Y.L., Peng H., and Zhang J. 2010. Pure convection coupled piping model based on stabilized finite element SUPG. Chinese Journal of Geotechnical Engineering, 32(7): 1072–1078.
Mehenni A., Cuisinier O., and Masrouri F. 2016. Impact of lime, cement, and clay treatments on the internal erosion of compacted soils. Journal of Materials in Civil Engineering, 28(9): 04016071.
Munson, B.R., Young, D.F., and Okiishi, T.H. 1998. Fundamentals of fluid mechanics. John Wiley and Sons, New York.
Regazzoni P.L. and Marot D. 2013. A comparative analysis of interface erosion tests. Natural Hazards, 67(2): 937–950.
Riha J. and Jandora J. 2015. Pressure conditions in the hole erosion test. Canadian Geotechnical Journal, 52(1): 114–119.
Robinson C., Gibbes B., and Li L. 2006. Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophysical Research Letters, 33(3): 155–170.
Turner I.L. and Acworth R.I. 2004. Field measurements of beachface salinity structure using cross-borehole resistivity imaging. Journal of Coastal Research, 20(3): 753–760.
Van Zyl, D., and Harr, M.E. 1981. Seepage erosion analysis of structures. In The 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, pp. 503–509.
Wan, C.F., and Fell, R. 2002. Investigation of internal erosion and piping of soils in embankment dams by the slot erosion test and the hole erosion test. UNICIV Report No. R-412, University of New South Wales, Sydney. ISSN 0077880X.
Wan C.F. and Fell R. 2004. Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotechnical Testing Journal, 27(3): 295–303.
Xu X.Z., Zhang H.W., Wang G.Q., Chen S.C., and Dang W.Q. 2009. An experimental method to verify soil conservation by check dams on the Loess Plateau, China. Environmental Monitoring and Assessment, 159(1–4): 293–309.
Information & Authors
Information
Published In
Canadian Geotechnical Journal
Volume 55 • Number 10 • October 2018
History
Received: 23 May 2017
Accepted: 4 January 2018
Published online: 18 January 2018
Copyright
© 2018.
Key Words
- hole erosion test
- piping
- hydraulic gradient
- measurement
- viewable tests
Mots-clés
- essai d'érosion de trou
- renard
- gradient hydraulique
- mesures
- essais visibles
Authors
Metrics & Citations
Metrics
Other Metrics
Citations
Cite As
Liquan Xie, Xin Liang, and Tsung-Chow Su. Measurement of pressure in viewable hole erosion test. Canadian Geotechnical Journal. 55(10): 1502-1509. https://doi.org/10.1139/cgj-2017-0292
Export Citations
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.
There are no citations for this item
View Options
Get Access
Media
Media
Other
Tables
Source: https://cdnsciencepub.com/doi/abs/10.1139/cgj-2017-0292
0 Response to "Erosion Test of Continuous Water Flow"
Enviar um comentário